
Geography – Climate Change

The Evidence								
Shrinking	Rising sea level	Seasonal changes	Ice core samples	Pollen analysis	Tree rings			
glaciers								
This is when	When the amount of	When the normal	Ice sheets are made up of	Pollen from plants	As a tree grows it			
glaciers in cold	water in the sea	weather patterns	layers of ice – one layer is	gets preserved in	forms a new ring			
areas of the	increases as a result of	and climate of a	formed each year. Scientists	sediment and	each year – the tree			
world, such as	melting glaciers. The	country changes and	drill into ice sheets to get	Scientists can	rings are thicker in			
Greenland, the	water that the glaciers	different seasons	long cores of ice. By	identify and date	warm, wet			
Arctic, and	melt into flows into the	arrive later/ earlier.	analysing the gases trapped	pollen to show	conditions. Scientists			
Antarctic melt	sea causing the sea	In recent years there	in the layers of ice, they can	which species	take cores and count			
due to changes	levels to rise and could	have been signs of a	tell what the temperature	where living at the	the rings to find the			
in the climate.	result in the flooding of	seasonal shift -	was each year – they can <u>go</u>	time. Scientists	age of a tree. The			
Over the past 50	low-lying land. Rising	spring arrives earlier	back over the last 400,000	know the	thickness of each			
to 100 years,	sea levels is also due to	and winters tend to	years. The remains of	conditions that	ring shows what the			
<u>photographic</u>	thermal expansion.	be less severe. These	organisms found in cores	plants live in now,	climate was like.			
<u>evidence</u>	Between 1901 and	changes affect the	taken from ocean sediments	so preserved	Tree rings are a			
has shown that	2010, average global	nesting and	can also be analysed and	pollen from similar	reliable source of			
the world's	sea level rose by 0.19	migration patterns	these can extend the	plants show that	climate change for			
glaciers have	<u>m.</u>	of wildlife.	temperature record back at	climate conditions	the past 10,000			
been melting.			least 5 million years.	were similar.	<u>years.</u>			

The Quaternary period

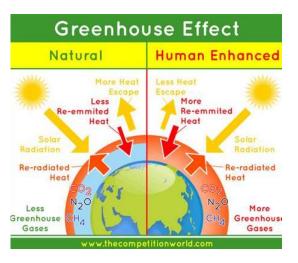
The Quaternary period is the most recent geological time period, spanning from about 2.6 million years ago to the present day.

During the Quaternary period, there have been many repeating **glacial-interglacial cycles** (at least 20), when the global temperature shifted between cold glacial periods that last for around 100,000 years and warmer interglacial periods that last for around 10,000 years.

Global warming is the term used to describe the sharp rise in global temperatures over the last century – it is a type of climate change.

Natural Causes

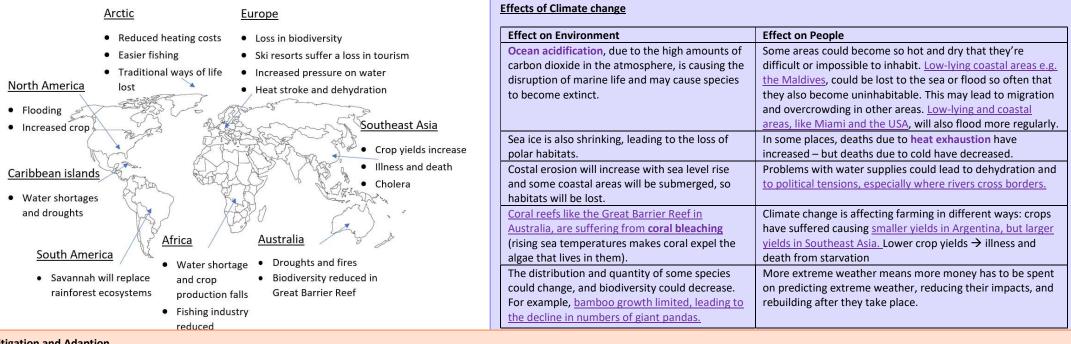
Volcanic activity \rightarrow Major volcanic eruptions eject large quantities of material into the atmosphere. Ash can shade the Earth, cooling it. Carbon dioxide is released during volcanic eruptions. Volcanic activity may cause short-term changes in climate e.g. <u>The Earth cooled by</u> about 0.5°C after Mount Pinatubo erupted in 1991.


Solar Output \rightarrow The Sun's energy output is not constant – it changes in short cycles of about 11 years, and possible cycles hundreds of years long as well. Reduced solar output means there are fewer **sunspots**, and that the Earth's climate may become cooler in some areas.

Orbital changes \rightarrow Orbital changes affect how much solar radiation the Earth receives. **Stretch** is that the Earth's orbit around the Sun varies from circular to elliptical <u>every 100,000 years</u> (also called eccentricity). **Tilt** is that the Earth's axis is tilted at an angle as it orbits the Sun. **Wobble** is that the Earth's axis wobbles like a spinning-top (also called precession). These changes may have caused the glacial and interglacial cycles of the Quaternary period.

Human Causes

There is a scientific consensus that human activity is causing global warming through the greenhouse effect. The greenhouse effect takes place when greenhouse gases, such as **carbon dioxide**, **methane**, **CFC's**, **water vapour** and **sulphur/nitrous oxides** absorb outgoing heat from the Earth. If greenhouse gas levels increase, more energy is trapped, and the planet warms up even more. Humans are increasing the concentration of these gases in the atmosphere through:


Fossil Fuels	Deforestation	Agriculture	Cement Production
CO ₂ is released into	Plants remove CO 2	Farming livestock	Cement is made
the atmosphere	from the atmosphere	like cows produces a	from limestone,
when fossil fuels like	and convert into	lot of methane and	which contains
coal, oil, natural gas,	organic matter.	rice farming also	carbon. When
and petrol are burnt,	When trees are	because flooded	cement is produced
e.g., thermal power	burned CO 2 is	fields emit methane.	lots of CO $_2$ is
stations or cars.	released.		released into the
			atmosphere.

<u>Key Words</u>

Mitigation – managing causes of climate changing. This involves reducing greenhouse gas emissions and increasing the sinks for these gases.
Adaption – adapting to change in climate. This involves changing lifestyles to cope with the consequences of climate change.
Climate change – Any change in global temperatures and precipitation (rainfall) over time, due to natural or human activity.
Glacial and Interglacial period – An interglacial is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age.
Long wave earth radiation – Radiation from the Earth that contains less energy than short-wave.

Short wave solar radiation – Radiation from the sun that contains more energy than long-wave.

Mitigation and Adaption

Alternative Energy Production	Replacing fossil fuels with nuclear or renewable energy can help reduce greenhouse gas emissions. In the UK, more offshore windfarms are being built, e.g., in East Anglia, and several wave, tidal and nuclear power projects have been planned. However, these sources of renewable energy are expensive, more expensive than fossil fuels, so many large companies fuelled by fossil fuels are rejecting this idea.				
Carbon Capture and Storage (CCS)	Designed to reduce emissions from power stations burning fossil fuels. CCS involves capturing CO 2 and transporting it to safe places where it can be stored, for example deep underground. However, this again is extremely expensive, costing more than the factories itself, so many factories do not want this sort of technology due to its economical weight. Furthermore, we do not know the long-term effects of this technology on the ground, so it is unknown whether it does damage to the ground.				
Planting Trees	Trees are like <u>carbon sinks</u> or sponges which soak up the carbon dioxide in the atmosphere to fix it into organic molecules through carbon fixation. Planting trees increases the amount of CO ₂ that is absorbed from the atmosphere through photosynthesis. The only disadvantage to this strategy of mitigation would be that <u>planting trees takes up land</u> , reducing the amount of land that can be used for urbanisation and agriculture.				
International Agreement	The Paris Agreement aims to reduce greenhouse gas emissions and limit global warming. It came into force in 2016 and has been signed by <u>195 parties</u> . Each country has submitted a pledge which indicates how much they will try to reduce their greenhouse gas emissions by. The EU and the UK agreed to reduce their emissions by at least 40% by 2030. On the other hand, so many <u>countries reject</u> or refuse to make these agreements because of the immense responsibility and increased costs.				
Changing Agricultural Systems	Changing rainfall patterns and higher temperatures will affect the productivity of existing systems. It may be necessary to plant new crop types that are more suited to the new climate conditions in an area. In some regions, biotechnology is being used to create new crop varieties which are more resistant to extreme weather events, e.g. drought resistant millet is being grown in Kenya.	All Adaptation strategies have the disadvantage that they do not actually prevent the process			
Managing Water Supply	Dry areas are predicted to get drier leading to more <u>water shortages</u> – so people need to use water more efficiently. <u>Water meters</u> can be installed in homes to discourage excessive water use. <u>Artificial glaciers are used in the Himalayas</u> to supply water to crops and people.	of climate change, they only prevent its effects. This means that is people go on only adapting, after a while the effects will be too severe to adapt to, so both adaption and mitigation is necessary in managing climate change.			
Coping with Rising Sea Levels	At current rates, sea levels are predicted to rise about <u>65cm by 2100</u> – this would flood many islands and coastal areas. Better flood warning systems are being put into place and <u>physical defences</u> such as <u>flood barriers</u> are being built. E.g. the Thames Barrier in London can be closed to prevent sea water flooding the city. In areas that cannot afford expensive flood defences, e.g., <u>Bangladesh</u> , people are building raised flood shelters on stilts and building houses on embankments.				