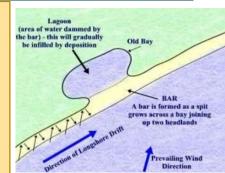

Geography – Coastal Landscapes

Constructive Wave Destructive Wave Wave formation Wave types Short wave length so high frequency (10-14 waves pe • Waves are formed by the wind Constructive Destructive Long wave length so low-frequency Water spreads long way up the gently sloping (8-10 waves per minute) Where is it formed? Formed by storms often Formed by local storms close to the blowing over the sea hundreds of kilometres away. coast. Friction with the surface of the When is it common? Gains a little height Summer Winter water causes ripples to form breaks and spills Low wave heigh on the bear Stronger backwash erodes sand and Is the swash or Stronger swash pushes sand These develop into waves • shore friction slowing the backwash stronger? and pebbles up the beach. pebbles and can destroy the beach base of the wave Powerful/big wave needs... Offshore bar where sand is Winds and energy Weaker winds, low energy Stronger winds, high energy Orbit becomes eliptical due 1. Long fetch (the distance the wind waves have shore friction slow ving the Wave height a circular Low High blows across the water) Very strong back Strong swas Blowing for a long period of time 2. Mass Movement Wave period - the time interval from crest to crest in seconds 3. High wind speed/strength Sea waves have wave intervals between 1 and 20 seconds. Mass movement is the downward movement of weathered material and rock under the influence of gravity. Waves approaching the coast crest of wave wave crest Rockfall Landslide Mudflow Slumping/Rotational slip wavelanath water breaks rises and steepens 1. Circular orbit in open water (little Involves fragments Waves break at foot of cliff and erode These occur when saturated Soft boulder clay holds rainwater up the beach wave horizontal movement). as swash trough of rock breaking to create a wave-cut notch. Overhang soil and weak rock flows and runoff. Waves erode base 2. Friction with seabed distorts away from the cliff is created and blocks of rock slide down a slope. These typically creating wave-cut notch. Weight heiab circular motion. face. often due to downhill. This usually occurs where occur where cliffs are made of saturated clay causes slumping ncreasingly elliptical orbi backwash circular 3. Increasingly elliptical orbit as water freeze-thaw. there is more resistant cliff material. of boulder clay. along curved surface. orbit seabed (beach) becomes shallower, and waves **Coastal Erosion** move forward. The crest of the Туре Explanation wave moves faster. The power of the waves as they hit a cliff. 4. Wave breaks and collapses onto **Coastal Deposition** Trapped air is forced into cracks in the rock Weathering beach. Water rushes up as swash eventually causing it to break up. Water slows down, and waves lose energy. and returns as backwash. The 'sandpapering' effect of pebbles grinding Mostly by constructive waves as swash is stronger. **Example and description** Factors that make erosion higher over a rocky platform. Some bays are protected by spits, waves in bays Freeze-thaw: Winds blowing for a long time Rock fragments carried by the sea knock against slow down, lose energy, can no longer carry Water collects in cracks each other becoming rounded. No beach to buffer the waves sediment and deposit it. At night, water freezes, expands and makes cracks bigger Dissolving of soluble chemicals in rock e.g. Faults/joints in the rock Waves lose energy when it is refracted around Ice thaws, and water seeps deeper into crack limestone. Strong winds, large fetch headland, headland absorbs most of the energy, Repeated freeze-thaw causes fragments to break off Rock fragments picked up by the sea are thrown Headlands jutting out to sea waves have less energy when reaching the bays, Salt weathering: at the cliff. They scape and wear away the rock. Mechanical Soft rock (clay) • deposition When water evaporated from cracks, it leaves salt crystals . Traction Factors that make deposition higher . Crystals grow and expand in cracks Large rocks & boulders are rolled along the Solution **Coastal Transportation** Minerals are dissolved in the water & are carr . Puts pressure on rocks and flakes break off In low energy, sheltered bays Longshore drift: is the movement of material along the Suspension Carbonation: Small fetch, weaker wind shore by wave action. ong in the wate Saltation Rainwater absorbs CO2 from air, making it acidic Large flat beach, swash spreads amical Little pebb 1. Waves approach the beach at an angle due to Contact with alkaline rocks (limestone) produces chemical over large area, weakens wave prevailing wind reaction \rightarrow rocks dissolve £ Duration of wind is short 2. Swash carries material up and along beach at angle Direction of Plant roots grow in cracks, and animals burrow into weak rock. Biological SWASH Engineered structures like groynes 3. Backwash carries material back down beach at longshore drift trap sediment right angles (gravity) BACKWASH Deposit updrift (eroding headland) 4. This process moves material along the beach Direction of Tidal material trapped behind a spit ٠ prevailing wind **Erosion landforms: Headlands and bays** l ess resistant **Erosion landforms: Cliffs and Wave-cut platforms** Less resistant (3) Cliff increases in height 1. Weaker bands of rock (e.g. clay) erode rock worn away (softer) clav to leave a bay 1. When waves break against a cliff, erosion close to the high tide more easily to form bays (2) Cliff retreats line will wear away the cliff. A wave-cut notch is formed. 2. As the bays are sheltered, deposition takes Resistant (harder) (harder) rock left 1) Original position of cliff 2. Over time, the notch gets deeper, undercutting the cliff. sandstone as a headland place and sandy beaches form Waves Waves The overlying cliff collapses. The cliff retreats over time after 3. Sheltered bay -Clay 3. Tougher, more resistant bands of rock (e.g. sand is deposited repetition. Resistant (harder) limestone/sandstone) erode more slowly Headland chalk or limestone 4. A gently sloping rocky platform – a wave-cut platform – is formed. High water mark 4. They stick out to form headlands. Erosion Wave-cut notch 5. It is smooth due to the process of abrasion (it may be scarred Low water mark Clay Bay dominates, so there are no beaches.

with rock pools).

Wave-cut platform



- Deposition landforms: Bars
- Longshore drift may cause a spit to grow right across a bay, trapping a freshwater lake behind it.
- An offshore bar forms further out to sea. Waves approaching a gently sloping coast deposit sediment due to friction with the seabed. The build-up of sediment offshore causes waves to break at some distance from the coast.
- In the UK, some offshore bars have been driven onshore by rising sea levels following ice melt at the end of the last glacial period. The type of feature is called a barrier beach.

The Dorset Coastline

Swanage lies on the south coast of England. The surrounding coastline has a range of coastal erosion and deposition landforms influenced by different rock types and geological structures. Rocks have been folded and tilted so that different rock types reach the coast.

Concordant coastline forms where rock types run parallel to the coast, so the coast is formed of one type. Discordant coastline forms where there are alternating bands of harder and softer rocks, creating headlands and bays.

- the weak backwash can move them back down the beach, creating a long, gentle slope.
- <u>Shingle</u> beaches are created by <u>high energy waves</u> and are <u>steep</u> and <u>narrow</u> sand particles are washed away but larger shingle is left behind. The shingle particles build up to create a steep slope.

Landform	Description	Туре	Example
Arch	A wave-eroded passage through a small headland.	Erosion	Durdle Door
Cove	A cove is a small type of coastal inlet that have narrow, restricted entrances, and are often circular or oval.	Erosion	Lulworth Cove
Wave-cut platform	A wave-cut platform is a wide, gently sloping surface found at the cliff's base and extends into the sea.	Erosion	Kimmeridge
Headland/Cliff	A headland is a cliff that sticks out into the sea and is surrounded by water on three sides.	Erosion	Durlston Head
Stack	A stack consists of a steep, vertical column of rock in the sea near a coast.	Erosion	Old Harry
Bay and beach	The areas where the soft rock has eroded away, next to the headland, are called bays.	Deposition	Swanage
Sand dunes	Accumulations of sand that gather on a beach, often created around obstacles on the beach.	Deposition	Studland
Spit	A spit is an extended stretch of beach material that projects out to sea and is joined to the mainland at one end.	Deposition	Sandbanks
Bar	A bar is a ridge of sand or single that joins two headlands either side of a bay.	Deposition	Chesil beach

Soft Engineering

Soft engineering schemes are generally cheaper than hard engineering, though may need more maintenance. But there are more sustainable and are the preferred option for coastal management

Meth	nod	Beach nourishment and reprofiling		Dune regeneration		Dune fencing	
How	it	•	Sand or shingle is dredged offshore and transported to the coast by barge.	•	Marram grass is planted to stabilise dunes and help them develop,	•	Fences are constructed along the seaward side of
work	s	•	It is dumped on the beach and shaped by bulldozers creating a wider, higher beach.		which makes them effective buffers to the sea.		existing dunes to encourage new dune formation
		•	Friction makes waves lose energy and erosive power, protecting the land behind.	•	Fences keep people off newly planted areas	•	New dunes help to protect existing dunes
Pros	and	•	Blends in with existing beach	•	Maintains a natural environment – good for wildlife	•	Little impact on natural systems
cons		•	Bigger beach increases tourist potential	•	Relatively cheap	•	Controlling access protects other ecosystems
		•	Expensive	•	Time consuming to plant grass and construct fencing	٠	Can be unsightly
		•	Needs constant maintenance	•	Can be damaged by storms	•	Needs regular maintenance, especially after storms

Hard Engineering

Hard engineering uses artificial structures to control natural processes.

Method	Sea walls	Groynes	Rock Armour	Gabions
How it	• Concrete or rock barrier at the foot of cliffs or top	Rock or timber structures built at right angles to beach	Piles of large boulders at foot of cliff	Rock-filled wire cages that support
works	of beach	They trap sediment moved by longshore drift and enlarge	Gaps between rocks allow water through and	a cliff and provide a buffer against
	Curved to reflect waves out to sea	the beach	disperses energy of waves and reduced their erosional	the sea
	Step slope absorbs wave energy	Effective at increasing a natural barrier of beach, and can	power.	Absorb wave energy
	Drains allow water out to sea to return flood water	create calmer inshore water	 If made of hard rock (e.g. granite) it is eroded slowly 	Improve drainage of cliffs
Pros	Effective at stopping the sea	Create a wider beach – good for tourism	Relatively cheap; easy to maintain	• Can improve cliff drainage, cheap
and	Often creates a walkway	Not too expensive	Can add interest to the coast	Eventually vegetated and merges
cons	Can look obtrusive and unnatural	Interrupting longshore drift can lead to increased erosion	Rocks are often from elsewhere and don't fit in with	into landscape
	Very expensive; high maintenance costs	elsewhere (problem is therefore shifted, not solved)	local geology	Unattractive initially
	Erosion at base can undermine sea wall	Require maintenance and repair	Expensive to transport rock and can be obtrusive	Cages rust within 5-10 years
	foundations	Unnatural and rock groynes are unattractive		

Managed Retreat – Medmerry (CASE STUDY)

Managed retreat allows the sea to flood or erode an area of relatively low-value land.

Location: Selsey, West Sussex (South East England)

Reasons for the m	or the management The management strategy					
To prevent the flo	oding of 348	Embankment: a 2km clay bank made inland was constructed so the properties	made inland was constructed so the properties behind it are protected.			
properties, a water treatment		Channel: Behind the embankment, a channel was built along its whole length to collect draining water. 4 outfall structures were built so that the water coming				
plant and a main road. The last		in can fill the channels without flooding the area, protecting properties and farmland.				
breach in 2008 cost £5 million.						
The old seawall was damaged, Rock Armour: Placed on the seaward edges of the embankment. This used 60,			100 tonnes of hard rock from Norway. This means that as the waves come to the			
and was too expensive to		coast they lose their energy and erosive power, protecting the residential area of the coast from being flooded.				
replace.						
The land was low-value non-		Breach: Once the embankment and rock armour were in place, a 110-metre breach was made in the shingle band, creating a new intertidal area. This means				
residential flat farmland.		that the land absorbs the power of the waves, reducing the risk of flooding.				
Positives			Negatives			
Social	• 1 in 100	0 chance of flooding	Some residents feel that EA should have looked into other options			
	 10km of 	f footpaths and 7km of new bike paths	Some resented such an expenditure in such a sparsely populated area			
Economic	• Tourism expected to increase with 2 new car parks and 4 viewing points		High cost of £28 million			
	 Flooded 	area expected to become important fishing nursery, boosting fishing industry	3 farms growing oilseed rape and winter wheat had to be abandoned			
Environmental	Water v	oles, crested newts and badgers protected	Despite planning, habitats of existing species such as badgers would have			
	• 300 hec	tares of new intertidal habitats forming e.g. ducks and lapwings	been disturbed			